
Pattoo Documentation

Peter Harrison

Aug 31, 2020

Introduction:

1 Introduction 3
1.1 About Pattoo . 3
1.2 Basic Installation . 4
1.3 Configuration Guide . 5
1.4 Configuring systemd Daemons . 8
1.5 Backup and Restoration . 9

2 Daemon and Cron Setup 11
2.1 Periodic Jobs . 11
2.2 Pattoo Web API Daemon . 11
2.3 Pattoo Agent API Daemon . 12
2.4 Pattoo Ingester Daemon . 14

3 Using the CLI 17
3.1 Using the CLI . 17

4 Testing GraphQL Queries 23
4.1 GraphQL API . 23
4.2 Queries with REST . 48

5 Miscellaneous Information 51
5.1 Creating pattoo Agents . 51
5.2 Performance and Troubleshooting . 51
5.3 JSON Formatting for pattoo-agents . 52
5.4 Pattoo Terminology . 52

6 Developers 53
6.1 How To Contribute . 53
6.2 Testing Your Code . 55

i

ii

Pattoo Documentation

pattoo stores timeseries data in a database and makes it available for users via a GraphQL API.

Visit the Pattoo GitHub site to see the code.

Introduction: 1

https://github.com/PalisadoesFoundation/pattoo

Pattoo Documentation

2 Introduction:

CHAPTER 1

Introduction

General information about the project, including the the prerequisite steps to get it operational on your system.

1.1 About Pattoo

pattoo allows you to use your web browser to chart your organization’s constantly changing data.

It was inspired by the need to collect and visualize data from various DevOps, network, industrial PLC controllers,
electro-mechanical and enterprise systems on a single web dashboard.

This data is collected by pattoo agents. There are standard agents for:

• Linux

• SNMP

• Modbus TCP

• Bacnet/IP

• OPC UA

With programming skill, you can create your own custom agents if needed.

1.1.1 Operational Overview

pattoo has a number of inter-related components. You can see how they all work together on the pattoo web page.

1.1.2 The Palisadoes Foundation

pattoo is based on the original infoset code created by the Palisadoes Foundation as part of its annual Calico
Challenge program. Calico provides paid summer internships for Jamaican university students to work on selected
open source projects. They are mentored by software professionals and receive stipends based on the completion of
predefined milestones. Calico was started in 2015.

3

https://palisadoesfoundation.github.io/pattoo.github.io/
http://www.palisadoes.org

Pattoo Documentation

1.2 Basic Installation

This section covers some key steps to get you started.

1.2.1 Prerequisites

There are some software components that need to be installed prior to starting.

1. pattoo requires the installation of a MySQL or MariaDB database. Make sure this software is installed
beforehand.

2. pattoo only runs on Python 3.6 or higher

Let’s install the software.

1.2.2 Installation

Follow these steps.

1. Install git on your system.

2. Select and create the parent directory in which you want to install pattoo.

$ mkdir -p /installation/parent/directory
$ cd /installation/parent/directory

3. Clone the repository to the parent directory using the git clone command. You can also choose to
downloading and unzip the file in the parent directory. The repository can be found at: https://github.com/
PalisadoesFoundation/pattoo

$ cd /installation/parent/directory
$ git clone https://github.com/PalisadoesFoundation/pattoo.git

4. Enter the /installation/parent/directory/pattoo directory with the pattoo files.

5. Install the required packages using the pip_requirements document in the pattoo root directory

$ pip3 install -r pip_requirements.txt

6. Create the MySQL or MariaDB database for pattoo with the correct authentication parameters provided in
the Configuration Guide In this example adjust the name of your database and the password accordingly.

$ sudo mysql

CREATE DATABASE pattoo;
GRANT ALL PRIVILEGES ON pattoo.* TO pattoo@"localhost" IDENTIFIED BY
→˓'PATTOO_PASSWORD';
FLUSH PRIVILEGES;
exit;

7. Use the Configuration Guide to create a working configuration.

8. Run the installation script

$ sudo setup/install.py install all

9. View additional installation options installation_modes

4 Chapter 1. Introduction

https://github.com/PalisadoesFoundation/pattoo
https://github.com/PalisadoesFoundation/pattoo

Pattoo Documentation

10. Configure the required cron jobs. Periodic Jobs

1.3 Configuration Guide

After installation, you will need to create a configuration file in a directory dedicated to pattoo.

1.3.1 Setting the Configuration Directory Location

Currently the configuration directory is automatically set when the installationscript is run

1.3.2 Configuration Options

There are two ways to configure pattoo. These are the:

1. Quick Method

2. Expert Method

Quick Method

Use the quick method if you are new to pattoo.

$ sudo setup/pattoo_installation.py install configuration

The above command will set the most optimal defaults for your system for pattoo.

Additionally, the pattoo user and group will be created with the home directory for the pattoo user being /home/pattoo
All related directories and their subdirectories will be owned by the pattoo user

To guarantee success you will need to know the following beforehand.

1. db_name: Database name

2. db_username: Database username

3. db_password: Database password

4. db_hostname: Database hostname

Expert Method

This section goes into configuration parameters in great detail.

Copy the Templates to Your Configuration Directory

Follow the steps in this section if you don’t already have a valid configuration files in your PATTOO_CONFIGDIR
directory.

Copy the template files in the examples/etc directory to the PATTOO_CONFIGDIR location.

NOTE: If a /path/to/configuration/directory/pattoo_server.yaml or /path/to/
configuration/directory/pattoo.yaml file already exists in the directory then skip this step and
edit the file according to the steps in following sections.

1.3. Configuration Guide 5

Pattoo Documentation

$ cp examples/etc/pattoo_server.yaml.template \
/path/to/configuration/directory/pattoo_server.yaml

$ cp examples/etc/pattoo.yaml.template \
/path/to/configuration/directory/pattoo.yaml

The next step is to edit the contents of both files.

Edit Your Configuration Files

The pattoo server uses two configuration files:

1. pattoo.yaml: Provides general configuration information for all pattoo related applications. pattoo.
yaml also defines how pattoo agents should connect to the pattoo server APIs.

2. pattoo_server.yaml: Provides configuration details for all the pattoo server’s API daemons. These
APIs accept data from pattoo agents and also provide data to pattoo related applications through your
browser.

Take some time to read up on YAML formatted files if you are not familiar with them. A background knowledge is
always helpful.

Server Configuration File

The pattoo_server.yaml file created from the template will have sections that you will need to edit with custom
values. Don’t worry, these sections are easily identifiable as they all start with PATTOO_

NOTE: The indentations in the YAML configuration are important. Make sure indentations line up. Dashes ‘-‘
indicate one item in a list of items (if applicable).

pattoo_api_agentd:

ip_bind_port: 20201
ip_listen_address: 0.0.0.0

pattoo_apid:

ip_bind_port: 20202
ip_listen_address: 0.0.0.0

pattoo_ingesterd:

ingester_interval: 3600
batch_size: 500
graceful_timeout: 10

pattoo_db:
db_pool_size: 10
db_max_overflow: 10
db_hostname: PATTOO_DB_HOSTNAME
db_name: PATTOO_DB_NAME
db_password: PATTOO_DB_PASSWORD
db_username: PATTOO_DB_USERNAME

6 Chapter 1. Introduction

Pattoo Documentation

Server Configuration Explanation

This table outlines the purpose of each configuration parameter.

Sec-
tion

Config-
uration
Param-
eters

Description

pattoo_api_agentd
ip_listen_addressIP address used by the pattoo_api_agentd daemon for accepting data from remote

pattoo agents. Default of ‘0.0.0.0’ which indicates listening on all available network
interfaces. You can also use IPv6 nomenclature such as ::. The pattoo APIs don’t
support IPv6 and IPv4 at the same time.

ip_bind_portTCP port of used by the pattoo_api_agentd daemon for accepting data from remote
pattoo agents. Default of 20201.

pattoo_apid
ip_listen_addressIP address used by the pattoo_apid daemon for providing data to remote clients. Default

of ‘0.0.0.0’ which indicates listening on all available network interfaces. You can also use
IPv6 nomenclature such as ::. The pattoo APIs don’t support IPv6 and IPv4 at the same
time.

ip_bind_portTCP port of used by the pattoo_apid daemon for providing data to remote clients. De-
fault of 20202.

pattoo_ingesterd
ingester_intervalThe interval between checking for new agent files in the cache directory. Only valid if using

the pattoo_ingesterd daemon.
batch_sizeThe number of files to read per processing batch until all files are processed.
graceful_timeoutThe amount of time required for the ingester to finish processing data when the stop or restart

command is excuted before it is forcefully stopped or restarted.
pattoo_db

db_hostnameHostname of the database server
db_usernameUsername required for database access
db_passwordPassword required for database access
db_name Name of database
db_pool_sizeThis is the largest number of connections that will be keep persistently with the database
db_max_overflowMaximum overflow size. When the number of connections reaches the size set in

db_pool_size, additional connections will be returned up to this limit. This is the float-
ing number of additional database connections to be made available.

Client Configuration File

The pattoo.yaml file created from the template will have sections that you will need to edit with custom values.
Don’t worry, these sections are easily identifiable as they all start with PATTOO_

NOTE: The indentations in the YAML configuration are important. Make sure indentations line up. Dashes ‘-‘
indicate one item in a list of items (if applicable).

pattoo:
log_level: debug
log_directory: PATTOO_LOG_DIRECTORY
cache_directory: PATTOO_CACHE_DIRECTORY
daemon_directory: PATTOO_DAEMON_DIRECTORY
system_daemon_directory: PATTOO_SYSTEM_DAEMON_DIRECTORY

1.3. Configuration Guide 7

Pattoo Documentation

Client Configuration Explanation

This table outlines the purpose of each configuration parameter.

Sec-
tion

Config-
uration
Param-
eters

Description

pattoo
log_directoryPath to logging directory. Make sure the username running the daemons have RW access to

files there.
log_levelDefault level of logging. debug is best for troubleshooting.
cache_directoryDirectory that will temporarily store data data from agents prior to be added to the pattoo

database.
daemon_directoryDirectory used to store daemon related data that needs to be maintained between reboots
system_daemon_directoryDirectory used to store daemon related data that should be deleted between reboots. This should

only be configured if you are running pattoo daemons as systemd daemons. The systemd
daemon installation procedure automatically adjusts this configuration. This parameter defaults
to the daemon_directory value if it is not configured.

1.4 Configuring systemd Daemons

You can also setup all the pattoo related daemons located in this GitHub repository as system daemons by executing
the setup/systemd/bin/install_systemd.py script.

The script requires you to specify the following parameters. Make sure you have a username and group created for
running your pattoo services.

usage: install_systemd.py [-h] -f CONFIG_DIR -u USERNAME -g GROUP

optional arguments:
-h, --help show this help message and exit
-f CONFIG_DIR, --config_dir CONFIG_DIR

Directory where the pattoo configuration files will be located
-u USERNAME, --username USERNAME

Username that will run the daemon
-g GROUP, --group GROUP

User group to which username belongs

Note The daemons are not enabled or started by default. You will have to do this separately using the systemctl
command after running the script.

$ sudo setup/systemd/bin/install_systemd.py --user pattoo --group pattoo --config_dir
→˓/etc/pattoo

SUCCESS! You are now able to start/stop and enable/disable the following systemd
→˓services:

pattoo_api_agentd.service
pattoo_apid.service
pattoo_ingesterd.service

$

8 Chapter 1. Introduction

Pattoo Documentation

1.5 Backup and Restoration

Always take precautions. Backup your data as you’ll never know when you’ll need to restore it.

1.5.1 Backup

It is strongly advised that you backup your agents to protect you in the event of catastrophe.

The following directories need to be saved periodically.

1. The PATTOO_CONFIGDIR directory which contains your configuration

2. The daemon_directory location defined in your configuration. This area stores important authentication
information.

3. The pattoo directory which contains your source code.

We’ll discuss data restoration next.

1.5.2 Restoration

It’s important to follow these steps in this order when restoring pattoo after a disaster.

1. FIRST make sure all the pattoo agents are stopped.

2. SECOND restore the contents of the daemon_directory location defined in your configuration. This area
stores important authentication information.

3. Restore the PATTOO_CONFIGDIR directory which contains your configuration

4. Restore the pattoo directory which contains your source code.

You should now be able to restart your agents without issue.

1.5. Backup and Restoration 9

Pattoo Documentation

10 Chapter 1. Introduction

CHAPTER 2

Daemon and Cron Setup

How to get the daemons running to collect data.

2.1 Periodic Jobs

You will need to configure some jobs to improve pattoo performance and troubleshooting.

2.1.1 Logrotate Configuration

The default pattoo debug logging mode can quickly create large logging files. The logrotate utility can automatically
compress and archive them.

1. Copy the the examples/logrotate.d/pattoo file to the /etc/logrotate.d directory.

2. Edit the file path accordingly.

Read up on the logrotate utility if you are not familiar with it. The documentation is easy to follow.

2.2 Pattoo Web API Daemon

pattoo_apid serves pattoo agent data from the database via a web API.

2.2.1 Installation

Follow these steps.

1. Follow the installation steps in the Basic Installation file.

2. Configure the main section of the configuration file following the steps in Configuration Guide file.

11

Pattoo Documentation

3. Start the desired daemons using the commands below. You may want to make these systemd daemons, if so
follow the steps in the Basic Installation file.

2.2.2 Usage

pattoo_apid has a simple command structure.

The daemon will require a configuration file in the etc/ directory. See the configuration section for details.

$ bin/pattoo_apid.py --help
usage: pattoo_apid.py [-h] [--start] [--stop] [--status] [--restart]

[--force]

optional arguments:
-h, --help show this help message and exit
--start Start the agent daemon.
--stop Stop the agent daemon.
--status Get daemon daemon status.
--restart Restart the agent daemon.
--force Stops or restarts the agent daemon ungracefully when used with --stop or

--restart.
$

2.2.3 Configuration

No additional configuration steps beyond that in the Configuration Guide file are required.

2.2.4 Testing

There are a number of steps you can take to make sure everything is OK.

1. If you have setup the daemon for systemd then you can use the systemctl command to get the status of
the daemon.

2. The daemon should be running on the port configured with the ip_bind_port parameter. Use the netstat
command to verify this.

3. Visit the URL http://localhost:20202/pattoo/api/v1/web/status to get the status page.

4. Use the Performance and Troubleshooting for further steps to take

2.2.5 Making pattoo_apid Start Automatically After Reboot

The easiest way to do this is to consider Configuring systemd Daemons. Otherwise you will need to manually restart
the daemon after a reboot.

2.3 Pattoo Agent API Daemon

The pattoo_api_agentd API daemon accepts data from remote pattoo agents for storage in a database.

12 Chapter 2. Daemon and Cron Setup

Pattoo Documentation

2.3.1 Installation

Follow these steps.

1. Follow the installation steps in the Basic Installation file.

2. Configure the main section of the configuration file following the steps in Configuration Guide file.

3. Start the desired daemons using the commands below. You may want to make these systemd daemons, if so
follow the steps in the Basic Installation file.

2.3.2 Usage

pattoo_api_agentd has a simple command structure.

The daemon will require a configuration file in the etc/directory. See the configuration section for details.

$ bin/pattoo_api_agentd.py --help
usage: pattoo_api_agentd.py [-h] [--start] [--stop] [--status] [--restart]

[--force]

optional arguments:
-h, --help show this help message and exit
--start Start the agent daemon.
--stop Stop the agent daemon.
--status Get daemon daemon status.
--restart Restart the agent daemon.
--force Stops or restarts the agent daemon ungracefully when used with --stop or

--restart.
$

2.3.3 Configuration

No additional configuration steps beyond that in the Configuration Guide file are required.

2.3.4 Testing

There are a number of steps you can take to make sure everything is OK.

1. If you have setup the daemon for systemd then you can use the systemctl command to get the status of
the daemon.

2. The daemon should be running on the port configured with the ip_bind_port parameter. Use the netstat
command to verify this.

3. The pattoo_api_agentd temporarily stores all the data it receives from pattoo agents in the cache/
directory. Check there for recent .json files.

4. Visit the URL http://localhost:20201/pattoo/api/v1/agent/status to get the status page.

5. Use the Performance and Troubleshooting for further steps to take

2.3.5 Making pattoo_api_agentd Start Automatically After Reboot

The easiest way to do this is to consider Configuring systemd Daemons. Otherwise you will need to manually restart
the daemon after a reboot.

2.3. Pattoo Agent API Daemon 13

Pattoo Documentation

2.4 Pattoo Ingester Daemon

pattoo_ingesterd batch processes agent data received by the pattoo agent API daemon.

2.4.1 Installation

Follow these steps.

1. Follow the installation steps in the Basic Installation file.

2. Configure the main section of the configuration file following the steps in Configuration Guide file.

3. Start the desired daemons using the commands below. You may want to make these systemd daemons, if so
follow the steps in the Basic Installation file.

2.4.2 Usage

pattoo_ingesterd has a simple command structure.

The daemon will require a configuration file in the etc/ directory. See the configuration section for details.

$ bin/pattoo_ingesterd.py --help
usage: pattoo_ingesterd.py [-h] [--start] [--stop] [--status] [--restart]

[--force]

optional arguments:
-h, --help show this help message and exit
--start Start the agent daemon.
--stop Stop the agent daemon.
--status Get daemon daemon status.
--restart Restart the agent daemon.
--force Stops or restarts the agent daemon ungracefully when used with --stop or

--restart.
$

2.4.3 Configuration

No additional configuration steps beyond that in the Configuration Guide file are required.

2.4.4 Testing

There are a number of steps you can take to make sure everything is OK.

1. If you have setup the daemon for systemd then you can use the systemctl command to get the status of
the daemon.

2. Use the Performance and Troubleshooting for further steps to take

The pattoo_ingester

There is also a bin/pattoo_ingester.py script that can be used as needed for troubleshooting. Here’s how to
use it:

14 Chapter 2. Daemon and Cron Setup

Pattoo Documentation

1. Edit your PATTOO_CONFIGDIR path accordingly.

2. Stop the pattoo_ingesterd daemon.

3. Edit your PATTOO_CONFIGDIR path accordingly.

4. Check your log files for any possible errors.

2.4.5 Making pattoo_ingesterd Start Automatically After Reboot

The easiest way to do this is to consider Configuring systemd Daemons. Otherwise you will need to manually restart
the daemon after a reboot.

2.4. Pattoo Ingester Daemon 15

Pattoo Documentation

16 Chapter 2. Daemon and Cron Setup

CHAPTER 3

Using the CLI

How to use the Command Line Interface (CLI).

3.1 Using the CLI

The command line interface allows you to interact with the database in a number of ways.

3.1.1 Location of the CLI Script

The CLI script is located in the bin/ directory and is called bin/pattoo_cli.py.

Running the CLI script without any parameters will display the usage options as seen below.

$ bin/pattoo_cli.py
usage: pattoo_cli.py [-h] {show,create,set,import,assign} ...

This program is the CLI interface to configuring pattoo

positional arguments:
{show,create,set,import,assign}
show Show contents of pattoo DB.
create Create entries in pattoo DB.
set Show contents of pattoo DB.
import Import data into the pattoo DB.
assign Assign contents of pattoo DB.

optional arguments:
-h, --help show this help message and exit

17

Pattoo Documentation

3.1.2 Language

pattoo is meant to support multiple languages. The default language is English with a language code of en. Agents
do not post language specific data, but the keys used to define the data will need to be translated to descriptions that
are meaningful to the end user.

Language translation files should be provided with any pattoo agent you install. You may have to create your own
translation files for agents that poll data from non-standard data sources.

Viewing Languages

To view languages configured in the pattoo database use the bin/pattoo_cli.py show language com-
mand.

$ bin/pattoo_cli.py show language

idx_language code name

1 en English

Upadating Language Names

You can update the name of a language using the bin/pattoo_cli.py set language command. You must
specify the language code and provide a name using the --name qualifier

$ bin/pattoo_cli.py set language --code 'en' --name 'English (Jamaican)'

In this example we have changed the name to ‘English (Jamaican)’

Creating Languages

To create a new language use the bin/pattoo_cli.py create language command.

$ bin/pattoo_cli.py create language --code 'es' --name 'Spanish'

In this case we create a new language with the name “Spanish” and identifying code “es”

3.1.3 Agents

As stated before, pattoo agents report data to the central pattoo server.

Viewing Agents

To view the agents posting data to the pattoo server use the bin/pattoo_cli.py show agent command.

$ bin/pattoo_cli.py show agent

idx_agent agent_program agent_target enabled

1 pattoo_agent_snmp_ifmibd localhost 1
2 pattoo_agent_snmpd localhost 1

(continues on next page)

18 Chapter 3. Using the CLI

Pattoo Documentation

(continued from previous page)

3 pattoo_agent_os_autonomousd nada 1
4 pattoo_agent_os_spoked nada 1

Assigning Agents to Key-Pair Translations Groups

There are some important things to know first.

1. Each agent has an idx_agent number that can be seen in the first column of the bin/pattoo_cli.py show
agent command. 1. Each agent group has an idx_pair_xlate_group number that can be seen in the first
column of the bin/pattoo_cli.py show key_translation command.

To assign an agent to an agent group use the bin/pattoo_cli.py assign agent command.

$ bin/pattoo_cli.py assign agent --idx_agent 2 --idx_pair_xlate_group 4

In this case we have assigned agent with an idx_agent agent number of 2 to the idx_pair_xlate_group
group number 4

3.1.4 Key-Pair Translations

Agents only post key-value pairs to the pattoo server. Translations are short descriptions of what each key means.
The aim is for you to see these descriptions instead of the keys when you look at pattoo data with the pattoo-web
UI.

When a translation for a key reported by an agent is installed, the translation is seen in pattoo-web instead of the
key itself. This makes pattoo data more meaningful.

You don’t have to install translations for every agent that reports data. You just have to assign agents to agent
groups, then you assign a single set of translations to the agent group.

Viewing Agent Group Key-Pair Translation Assignments

You can view these agent group to translation group assignments using the bin/pattoo_cli.py
show key_translation_group command.

$ bin/pattoo_cli.py show key_translation_group

idx_pair_xlate_group translation_group_name enabled

1 Pattoo Default 1

2 IfMIB Agents 1

3 OS Agents 1

Creating Translation Groups

To create a new translation group use the bin/pattoo_cli.py create key_translation command.

$ bin/pattoo_cli.py create key_translation --name "Stock Market Symbol Translations"

In this case we create a new translation group with the name “Stock Market Symbol Translations”

3.1. Using the CLI 19

Pattoo Documentation

Upadating Translation Group Names

You can update the name of a translation group using the bin/pattoo_cli.py set
key_translation_group command. You must specify the group’s idx_pair_xlate_group value
and a name.

$ bin/pattoo_cli.py set key_translation_group --idx_pair_xlate_group 20 --name 'New
→˓Translation Group Name'

In this example we have changed the name to ‘New Translation Group Name’ for idx_pair_xlate_group 20.

Viewing Agent Key-Pair Translation Groups

To view translation groups use the bin/pattoo_cli.py show key_translation command.

$ bin/pattoo_cli.py show key_translation

idx_pair_xlate_group name language key
→˓ translation units
→˓ enabled

1 Pattoo Default
→˓

→˓ 1

2 IfMIB Agents en pattoo_agent_snmp_ifmibd_ifalias
→˓ Interface Alias
→˓ 1

en pattoo_agent_snmp_ifmibd_ifdescr
→˓ Interface Description

en pattoo_agent_snmp_ifmibd_
→˓ifhcinbroadcastpkts Interface Broadcast Packets (HC inbound) Packets /
→˓Second

en pattoo_agent_snmp_ifmibd_
→˓ifhcinmulticastpkts Interface Multicast Packets (HC inbound) Packets /
→˓Second
...
...
...

3 OS Agents en pattoo_agent_os_autonomousd_cpu_
→˓frequency CPU Frequency Frequency
→˓ 1

en pattoo_agent_os_autonomousd_cpu_stats_
→˓ctx_switches CPU (Context Switches) Events / Second

en pattoo_agent_os_autonomousd_cpu_stats_
→˓interrupts CPU (Context Switches) Events / Second

en pattoo_agent_os_autonomousd_cpu_stats_
→˓soft_interrupts CPU (Soft Interrupts) Events / Second

en pattoo_agent_os_autonomousd_cpu_stats_
→˓syscalls CPU (System Calls) Events / Second

Creating Agent Key-Pair Translation Group CSV Files

Creating a CSV key-pair translation file is easy. Follow these steps.

20 Chapter 3. Using the CLI

Pattoo Documentation

1. Make sure the first row has the following headings separated by commas.

language,key,translation,units

1. Each subsequent row must have values that correspond to the headings. Each value must be separated by a
comma.

1. The language must correspond to the language configured in your pattoo.yaml configura-
tion file. pattoo-web will only evaluate translation entries that match to the configured language.
1. The key value must correspond to any expected keys from key-value pairs reported by an agent.
1. The translation must correspond to the brief text you want to use to describe the key 1. The
units value is used to let users know the unit of measure to be used for the data being tracked by
the key

language,key,translation,units
en,pattoo_agent_os_spoked_disk_io_write_bytes,Disk I/O (Bytes
→˓Written),Bytes / Second
en,pattoo_agent_os_spoked_disk_io_write_count,Disk I/O (Write
→˓Count),Writes / Second
en,pattoo_agent_os_spoked_disk_io_write_merged_count,Disk I/O
→˓(Write Merged Count),Writes / Second
en,pattoo_agent_os_spoked_disk_io_write_time,Disk I/O (Write Time),
en,pattoo_agent_os_spoked_disk_partition,Disk Partition,
en,pattoo_agent_os_spoked_disk_partition_device,Disk Partition,

Not all key-value pairs will need units. For example, agent metadata won’t have them.
In this case don’t put a value for units and end the line with a comma (,). The previ-
ous example shows three lines of translations including units followed by three without
units.

Importing Agent Key-Pair Translation Group Files

There are some important things to know first.

1. Each translation group has an idx_pair_xlate_group number that can be seen in the first col-
umn of the bin/pattoo_cli.py show key_translation_group command. 1. The translations for the
translation group must be in a CSV file formatted according to the guidelines mentioned previously.

To import a translation file’s data and assign it to a translation group use the bin/pattoo_cli.py
import key_translation command.

$ bin/pattoo_cli.py import key_translation --idx_pair_xlate_group 7 --filename agent_
→˓name_1_english.csv

In this case we have imported translations from a file named agent_name_1_english.csv and assigned it to a
translation group with an idx_pair_xlate_group number of 7.

You only need to import translations for the key-pairs you require. Any previously existing translation for an key-pair
configured in the file will be updated. key-pairs not in the file will not be updated.

3.1.5 Agent Translations

Not only do an agent’s key-pairs need translations, but the agents themselves need translations too. This is because
an agent only reports its name when posting which, through translations, allows pattoo to be more flexible in
supporting many different spoken languages.

Without translations, all references to a pattoo agent will just be by its name, which could be confusing.

3.1. Using the CLI 21

Pattoo Documentation

Viewing Agent Translations

To view agent translations use the bin/pattoo_cli.py show agent_translation command.

$ bin/pattoo_cli.py show agent_translation

language agent_program translation enabled

en pattoo_agent_os_autonomousd Pattoo Standard OS Autonomous Agent 1
pattoo_agent_os_spoked Pattoo Standard OS Spoked Agent
pattoo_agent_snmpd Pattoo Standard SNMP Agent
pattoo_agent_snmp_ifmibd Pattoo Standard IfMIB SNMP Agent
pattoo_agent_modbustcpd Pattoo Standard Modbus TCP Agent
pattoo_agent_bacnetipd Pattoo Standard BACnet IP Agent

Creating Agent Translation CSV Files

Creating a CSV agent translation file is easy. Follow these steps.

1. Make sure the first row has the following headings separated by commas.

language,key,translation

1. Each subsequent row must have values that correspond to the headings. Each value must be separated by a
comma.

1. The language must correspond to the language configured in your pattoo.yaml configura-
tion file. pattoo-web will only evaluate translation entries that match to the configured language.
1. The key value must correspond to the name of an agent. 1. The translation must correspond
to the brief text you want to use to describe the key

language,key,translation
en,pattoo_agent_os_autonomousd,Pattoo Standard OS Autonomous Agent
en,pattoo_agent_os_spoked,Pattoo Standard OS Spoked Agent
en,pattoo_agent_snmpd,Pattoo Standard SNMP Agent
en,pattoo_agent_snmp_ifmibd,Pattoo Standard IfMIB SNMP Agent
en,pattoo_agent_modbustcpd,Pattoo Standard Modbus TCP Agent
en,pattoo_agent_bacnetipd,Pattoo Standard BACnet IP Agent

Importing Agent Translation Files

To import an agent translation file’s data use the bin/pattoo_cli.py import agent_translation com-
mand.

$ bin/pattoo_cli.py import agent_translation --filename agent_name_translation_
→˓english.csv

In this case we have imported translations from a file named agent_name_translation_english.csv.

You only need to import translations for the agents you require. Any previously existing translation for an agent
configured in the file will be updated. agents not in the file will not be updated.

22 Chapter 3. Using the CLI

CHAPTER 4

Testing GraphQL Queries

Developer testing tools.

4.1 GraphQL API

You can use the pattoo API to retrieve data using a GraphQL interface. It’s best to become familiar with GraphQL
before reading further.

After completing this tutorial you’ll be able to do programmatic GraphQL queries.

4.1.1 Queries with GraphQL

By default the pattoo server will run on port TCP 20202.

Interactive GraphQL

Interactive GraphQL allows you to test your queries using your web browser.

If you are running it on your local machine go to the http://localhost:20202/pattoo/api/v1/web/igraphql to see the
interactive query tool.

Non Interactive GraphQL

If you want to access GraphQL programmatically, without using your browser then you’ll need to access the non-
interactive GraphQL URL.

If you are running it on your local machine go to the http://localhost:20202/pattoo/api/v1/web/graphql URL to get
your results.

23

http://localhost:20202/pattoo/api/v1/web/igraphql
http://localhost:20202/pattoo/api/v1/web/graphql

Pattoo Documentation

Retrieving GraphQL data with Pattoo-Web

You can use the get function in this file to get GraphQL data from the pattoo API server. https://github.com/
PalisadoesFoundation/pattoo-web/blob/master/pattoo_web/phttp.py

4.1.2 How The Database Maps to GraphQL Queries

Note This section is very detailed, but it will help you with understanding how the GraphQL keywords required for
your queries were created.

There are two important files in the repository’s pattoo/db directory.

1. models.py: Defines the database structure using the python SQLAlchemy package

2. schema.py: Maps the database structure from SQLAlchemy to GraphQL queries using the graphene-sqlalchemy
package.

Models.py

This file defines the tables and columns in the database.

1. Each class defines a table

2. Each variable in the class defines the columns. The variable name is the column name

The python graphene-sqlalchemy package used to present GraphQL will convert column names into camelCase, re-
moving any underscores. Therefore a column named idx_datapoint will be idxDatapoint in your GraphQL queries.

You will notice some tables will have foreign keys as part of the RDBMS structure. Here is an example in the
AgentXlate table:

class AgentXlate(BASE):
"""Class defining the pt_agent_xlate table of the database."""

__tablename__ = 'pt_agent_xlate'
__table_args__ = (

UniqueConstraint('idx_language', 'agent_program'),
{'mysql_engine': 'InnoDB'}

)

idx_agent_xlate = Column(
BIGINT(unsigned=True), primary_key=True,
autoincrement=True, nullable=False)

idx_language = Column(
BIGINT(unsigned=True),
ForeignKey('pt_language.idx_language'),
index=True, nullable=False, server_default='1')

You will also notice that this class also has a backref relationship near the bottom. This is what graphene-sqlalchemy
uses to track the relationships for queries. In this case, the backref has the name Agent_xlate_language which will be
converted to agentXlateLanguage camelCase in your GraphQL queries

language = relationship(
Language,
backref=backref(

'Agent_xlate_language', uselist=True,cascade='delete,all'))

24 Chapter 4. Testing GraphQL Queries

https://github.com/PalisadoesFoundation/pattoo-web/blob/master/pattoo_web/phttp.py
https://github.com/PalisadoesFoundation/pattoo-web/blob/master/pattoo_web/phttp.py
https://github.com/palisadoes/pattoo/tree/master/pattoo/db

Pattoo Documentation

Schemas.py

This file contains the mappings from SQLAlchemy table definitions to GraphQL queries.

1. Database tables defined as SQLAlchemy classes in models.py are imported as Model classes in this file.

2. You’ll notice that if you manually type in your GraphQL queries in the /igraphql URL that you’ll see lists of
each available table column with explanations. These explanations are defined in the Attribute classes in this
file.

3. Attributes and models are tied together in the SQLAlchemyObjectType classes.

from pattoo.db.models import AgentXlate as AgentXlateModel

class InstrumentedQuery(SQLAlchemyConnectionField):
"""Class to allow GraphQL filtering by SQlAlchemycolumn name."""

def __init__(self, type_, **kwargs):
...
...
...

class AgentXlateAttribute():
"""Descriptive attributes of the AgentXlate table.
A generic class to mutualize description of attributes for both queries
and mutations.
"""

idx_agent_xlate = graphene.String(
description='AgentXlate table index.')

idx_language = graphene.String(
description='Language table index (ForeignKey).')

agent_program = graphene.String(
resolver=resolve_agent_program,
description=('Agent progam'))

translation = graphene.String(
resolver=resolve_translation,
description='Translation of the agent program name.')

enabled = graphene.String(
description='"True" if enabled.')

class AgentXlate(SQLAlchemyObjectType, AgentXlateAttribute):
"""AgentXlate node."""

class Meta:
"""Define the metadata."""

model = AgentXlateModel
interfaces = (graphene.relay.Node,)

Next we’ll discuss the Query class you’ll find further down the file. This class:

1. Uses the InstrumentedQuery class to filter queries by database column values. This InstrumentedQuery class makes things a lot easier. The graphene-sqlalchemy implementation of GraphQL has limited filtering capabilities. For example:

4.1. GraphQL API 25

Pattoo Documentation

1. Every row of every database table has a fixed unique automatically generated GraphQL ID which is a
graphene.relay.node.GlobalID object. You can filter specifically on this ID.

2. You also get lists of database row results containing the first X and last X rows.

3. Lists of database row results can also be obtained for values before and/or after X GraphQL ID values
retrieved from a database table.

4. Custom filtering for specific values in a database column can be using resolvers, but you have to
manually create a resolver for each table’s column. This per query customization is not ideal.

2. Has Node entries for single value GraphQL queries, or as a definition inside an “edges” section of a GraphQL
query. You can filter Nodes by the GraphQL graphene.relay.node.GlobalID too. This will be shown later.

class Query(graphene.ObjectType):
"""Define GraphQL queries."""

node = relay.Node.Field()

Results as a single entry filtered by 'id' and as a list
agent_xlate = graphene.relay.Node.Field(AgentXlate)
all_agent_xlate = InstrumentedQuery(AgentXlate)

4.1.3 Query Examples

Here are some query examples using the example database table we have been using. Run these queries in the /igraphql
url.

Note:

1. In all the examples in this section the “id” represents the graphene.relay.node.GlobalID string. You can use this
to get information on a specific row of a specific table.

2. The InstrumentedQuery related queries in the Query class can only filter on a database table value, not the
graphene.relay.node.GlobalID string.

Agent Table Queries

This section covers Agent table queries.

All Known Agents

This will provide information on all the known polling agents.

The agentProgram value will be used later for getting a translation into a meaningful name.

{
allAgent {
edges {

node {
id
idxAgent
agentPolledTarget
agentProgram

}
}

(continues on next page)

26 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

(continued from previous page)

pageInfo {
startCursor
endCursor
hasNextPage
hasPreviousPage

}
}

}

All Datapoints Polled by Agent where id = “X”

You’ll notice that this query also gives you the following information that will be required for translations later on:
#. key-value pair key value for translating Datapoint metadata #. agentProgram for translating the program name into
something meaningful #. idxPairXlateGroup for translating the key values

{
agent(id: "QWdlbnQ6Mg==") {
datapointAgent {

edges {
cursor
node {
id
idxDatapoint
idxAgent
agent {

agentProgram
agentPolledTarget
idxPairXlateGroup
pairXlateGroup {
id

}
}
glueDatapoint {

edges {
node {
pair {
key
value

}
}

}
}

}
}
pageInfo {

startCursor
endCursor
hasNextPage
hasPreviousPage

}
}

}
}

4.1. GraphQL API 27

Pattoo Documentation

All Charts in which Datapoints Polled by Agent appear. Where id = “X”

This query will show:

1. All Datapoints for an Agent

2. The charts to which each datapoint belongs

3. The favorites to which the charts belong

{
agent(id: "QWdlbnQ6MQ==") {
datapointAgent {

edges {
cursor
node {
id
idxDatapoint
idxAgent
chartDatapointDatapoint {

edges {
node {
idxChartDatapoint
chart {
id
idxChart
name
checksum
favoriteChart {
edges {
node {
idxFavorite

}
}

}
}

}
}

}
}

}
pageInfo {

startCursor
endCursor
hasNextPage
hasPreviousPage

}
}

}
}

DataPoint Table Queries

Here we have some representative queries you can do:

28 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

View All DataPoints

To see all DataPoints and their data enter this query on the left hand side of the viewer.

{
allDatapoints {
edges {

node {
id

idxDatapoint
checksum
dataType
lastTimestamp
pollingInterval
enabled

}
}

}
}

Sample Result

Here is the result of all DataPoints. Take note of (id: "RGF0YVBvaW50OjE=") as we’ll use it for querying
timeseries data.

{
"data": {
"allDatapoints": {
"edges": [
{
"node": {

"id": "RGF0YVBvaW50OjE=",
"idxDatapoint": "1",
"checksum":

→˓"ea5ee349b38fa7dc195b3689872c8487e7696201407ef27231b19be837fbc6da0847f5227f1813d893100802c70ffb18646e2097a848db0b7ea4ec15caced101
→˓",

"dataType": 99,
"lastTimestamp": 1575174588079,
"pollingInterval": 10000,
"enabled": "1"

}
},
{
"node": {

"id": "RGF0YVBvaW50OjI=",
"idxDatapoint": "2",
"checksum":

→˓"2b15d147330183c49a1672790bf09f54f8e849f9391c82385fd8758204e87940ab1ffef1bb67ac725de7cc0aa6aba9b6baeff34497ee494c38bee7f24eef65df
→˓",

"dataType": 99,
"lastTimestamp": 1575174588084,
"pollingInterval": 10000,
"enabled": "1"

}
}

]
(continues on next page)

4.1. GraphQL API 29

Pattoo Documentation

(continued from previous page)

}
}

}

Pair Table Queries

Here we have some representative queries you can do:

View All Key-Pair-Values

To see all Key-Pair-Values enter this query on the left hand side of the viewer.

{
allPairs {
edges {

node {
id
idxPair
key
value

}
}

}
}

Sample Result

Here is the result of all Key-Pair-Values.

{
"data": {
"allPairs": {

"edges": [
{
"node": {
"id": "UGFpcjox",
"idxPair": "1",
"key": "pattoo_agent_hostname",
"value": "palisadoes"

}
},
{
"node": {

"id": "UGFpcjoy",
"idxPair": "2",
"key": "pattoo_agent_id",
"value":

→˓"23a224313e4aaa4678a81638025ab02b42cb8a5b7c47b3dd2efced06d1a13d39"
}

},
{
"node": {

(continues on next page)

30 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

(continued from previous page)

"id": "UGFpcjoz",
"idxPair": "3",
"key": "pattoo_agent_polled_device",
"value": "device.example.com"

}
},
{
"node": {

"id": "UGFpcjo0",
"idxPair": "4",
"key": "pattoo_agent_program",
"value": "pattoo_agent_modbustcpd"

}
}

]
}

}
}

Glue Table Queries

Here we have some representative queries you can do:

View All GluePoints

To see all GluePoints enter this query on the left hand side of the viewer. This table maps all the key-value pairs
associated with an individual DataPoint

{
allGlues {
edges {

node {
id
idxPair
idxDatapoint

}
}

}
}

Sample Result

{
"data": {
"allGlues": {

"edges": [
{
"node": {
"id": "R2x1ZTooMSwgMSk=",
"idxPair": "1",
"idxDatapoint": "1"

(continues on next page)

4.1. GraphQL API 31

Pattoo Documentation

(continued from previous page)

}
},
{
"node": {

"id": "R2x1ZTooMSwgMik=",
"idxPair": "1",
"idxDatapoint": "2"

}
},
{
"node": {

"id": "R2x1ZTooMSwgMyk=",
"idxPair": "1",
"idxDatapoint": "3"

}
},
{
"node": {

"id": "R2x1ZTooMSwgNCk=",
"idxPair": "1",
"idxDatapoint": "4"

}
}

]
}

}
}

Data Table Queries

Here we have some representative queries you can do:

View All Numeric Timeseries Data for DataPoint id “x”

To see all numeric data for a specific datapoint (id: "RGF0YVBvaW50OjE="), enter this query on the left hand
side of the viewer.

{
datapoint(id: "RGF0YVBvaW50OjE=") {
id
idxDatapoint
checksum
dataType
pollingInterval
dataChecksum {

edges {
node {
id
timestamp
value

}
}

}

(continues on next page)

32 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

(continued from previous page)

}
}

Sample Result

Here is all the timeseries data from (id: "RGF0YVBvaW50OjE=").

{
"data": {
"datapoint": {
"id": "RGF0YVBvaW50OjE=",
"idxDatapoint": "1",
"checksum":

→˓"ea5ee349b38fa7dc195b3689872c8487e7696201407ef27231b19be837fbc6da0847f5227f1813d893100802c70ffb18646e2097a848db0b7ea4ec15caced101
→˓",

"dataType": 99,
"pollingInterval": 10000,
"dataChecksum": {

"edges": [
{
"node": {

"id": "RGF0YTooMSwgMTU3NTE3MjgzNTAyOCk=",
"timestamp": "1575172835028",
"value": "738.0000000000"

}
},
{

"node": {
"id": "RGF0YTooMSwgMTU3NTE3Mjg0NTIxOSk=",
"timestamp": "1575172845219",
"value": "738.0000000000"

}
},
{

"node": {
"id": "RGF0YTooMSwgMTU3NTE3Mjg1NTM2NCk=",
"timestamp": "1575172855364",
"value": "738.0000000000"

}
}

]
}

}
}

}

Language Table Queries

This query provides all the configured languages. The code returned is the language code. In the results, a code of en
is english. Make translation queries based on this code value.

{
allLanguage {

(continues on next page)

4.1. GraphQL API 33

Pattoo Documentation

(continued from previous page)

edges {
node {

id
idxLanguage
code
name

}
}

}
}

Agent Translation Table Queries

This section outlines how to view Agent translation data.

All Agent Translation Table Entries

You can use this query to get the translation for an agentProgram name for a specific language.This is useful for the
home page.

{
allAgentXlate {
edges {

node {
id
idxAgentXlate
idxLanguage
agentProgram
translation
enabled
tsCreated
tsModified
language {
id
name
code
idxLanguage

}
}

}
}

}

Translation for a Specific agentProgram (all Languages)

In this case we get translations for the agentProgram named pattoo_agent_snmp_ifmibd.

{
allAgentXlate(agentProgram: "pattoo_agent_snmp_ifmibd") {
edges {

node {
id

(continues on next page)

34 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

(continued from previous page)

idxAgentXlate
idxLanguage
agentProgram
translation
enabled
tsCreated
tsModified

}
}

}
}

Single Node from Agent Translation table filtered by an ID

In this case:

1. The ID is a graphene.relay.node.GlobalID string.

2. The translation for the agentProgram is in the “translation” field.

{
agentXlate(id: "QWdlbnRYbGF0ZToy") {
id
idxAgentXlate
idxLanguage
agentProgram
translation
enabled
tsCreated
tsModified

}
}

Filtered Agent Translation table entry with Language where idxAgentXlate = “4”

There are some things to note:

1. This will provide a list of translations for all configured languages. The translation for the agentProgram is in
the “translation” field.

2. Normally you’d be able to filter by “id” with GraphQL. Unfortunately this capability was lost when we added
the customized ability to filter by any database table column. Hopefully the Python Graphene (GraphQL) team
will be able to fix this later as part of their standard build.

{
allAgentXlate(idxAgentXlate: "4") {
edges {

node {
id
idxAgentXlate
idxLanguage
agentProgram
translation
enabled

(continues on next page)

4.1. GraphQL API 35

Pattoo Documentation

(continued from previous page)

tsCreated
tsModified
language {
id
name

}
}

}
}

}

Key-Pair Translation Queries

This section outlines how to view key-pair translation data.

View all key-pair Translations

Here’s the query you’ll need to view all translations:

{
allPairXlate {
edges {

node {
id
idxLanguage
idxPairXlate
idxPairXlateGroup
key
translation

}
}

}
}

View key-pair Translations for idxPairXlateGroup = “x”

In this example, we filter by idxPairXlateGroup

{
allPairXlate (idxPairXlateGroup: "2"){
edges {

node {
id
idxLanguage
idxPairXlate
idxPairXlateGroup
key
translation

}
}

}
}

36 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

Favorites Table Queries

This section outlines how to view favorites data.

View all Favorites and Their Assigned Charts

This is the query string you’ll need to see all the favorites in the database.

{
allFavorite {
edges {

node {
id
idxFavorite
order
user {
id
idxUser
username
firstName
lastName

}
chart {
name
chartDatapointChart {

edges {
node {
idxDatapoint

}
}

}
}

}
}

}
}

User Table Queries

This section outlines how to view favorites data.

View all Favorites for All Users

This query will show:

1. All users

2. Their favorites

3. The charts associated with each favorite

{
allUser {
edges {

(continues on next page)

4.1. GraphQL API 37

Pattoo Documentation

(continued from previous page)

node {
id
username
firstName
lastName
enabled
favoriteUser {
edges {
node {
order
chart {
id
idxChart
name

}
}

}
}

}
}

}
}

View all Favorites for a Specific User (by filter other than ID)

This query will show:

1. The filtered username (“pattoo”)

2. Its favorites

3. The charts associated with each favorite

{
allUser(username: "pattoo") {
edges {

node {
id
username
favoriteUser {
edges {

node {
order
chart {
id
idxChart
name

}
}

}
}

}
}

}
}

38 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

View all Favorites for a Specific User (by ID)

This query will show:

1. The user

2. Its favorites

3. The charts associated with each favorite

{
user(id: "VXNlcjox") {
id
username
favoriteUser {

edges {
node {
order
chart {

id
idxChart
name

}
}

}
}

}
}

Authenticate Username and Password

This is a custom query that requires you enter a username and password. Regular query results are returned when
found, a Null result is returned upon failure.

{
authenticate(username: "palisadoes@example.org", password: "123456") {
id

}
}

Result

Results are returned when found.

{
"data": {
"authenticate": [

{
"id": "VXNlcjo3"

}
]

}
}

A Null result is returned when not found.

4.1. GraphQL API 39

Pattoo Documentation

{
"data": {
"authenticate": null

}
}

Pagination

This section outlines how to do simple pagination

View all Datapoints

This query will return all Datapoint values.

{
allDatapoints {
edges {

node {
idxDatapoint
idxAgent
id
tsCreated
tsModified

}
}

}
}

View First X Datapoints

It’s important to note the startCursor and endCursor values when wanting to paginate. They are useful in subsequent
queries where you may want ranges of values that are not relative to the very start and very end of database table rows.

{
allDatapoints(first: x) {
edges {

node {
idxDatapoint
idxAgent
id
tsCreated
tsModified

}
}
pageInfo {

startCursor
endCursor
hasNextPage
hasPreviousPage

}
}

}

40 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

View Last X Datapoints

It’s important to note the startCursor and endCursor values when wanting to paginate. They are useful in subsequent
queries where you may want ranges of values that are not relative to the very start and very end of database table rows.

{
allDatapoints(last: x) {
edges {

node {
idxDatapoint
idxAgent
id
tsCreated
tsModified

}
}
pageInfo {

startCursor
endCursor
hasNextPage
hasPreviousPage

}
}

}

Next X Datapoints

Note:

1. It’s important to note the endCursor of the previous query.

2. The next X results would need a query like the one below, starting at the endCursor value of the previous query.

{
allDatapoints(first: X, after: "END_CURSOR_VALUE") {
edges {

node {
idxDatapoint
idxAgent
id
tsCreated
tsModified

}
}
pageInfo {

startCursor
endCursor
hasNextPage
hasPreviousPage

}
}

}

4.1. GraphQL API 41

Pattoo Documentation

Previous X Datapoints

Note:

1. It’s important to note the startCursor of the previous query.

2. The previous X results would need a query like the one below, starting at the startCursor value of the previous
query.

{
allDatapoints(last: X, before: "START_CURSOR_VALUE") {
edges {

node {
idxDatapoint
idxAgent
id
tsCreated
tsModified

}
}
pageInfo {

startCursor
endCursor
hasNextPage
hasPreviousPage

}
}

}

4.1.4 Mutation Examples

Mutation is the terminology that GraphQL uses for database updates. Here are some query examples using the example
database table we have been using. Run these queries in the /igraphql url.

Chart Table Mutation

This section outlines how to mutate chart data.

Add a New Chart

This mutation will add the chart then return the resulting fields:

1. id

2. name

3. Enabled status

Mutation

mutation {
createChart(Input: {name: "Flying Fish"}) {
chart {

(continues on next page)

42 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

(continued from previous page)

id
name
enabled

}
}

}

Result

{
"data": {
"createChart": {

"chart": {
"id": "Q2hhcnQ6MjM5",
"name": "Flying Fish",
"enabled": "1"

}
}

}
}

Modify Chart Name

This mutation will change the chart name from “Flying Fish” to “Teddy Bear”:

Mutation

mutation {
updateChart(Input: {idxChart: "239", name: "Teddy Bear"}) {
chart {

id
name
enabled

}
}

}

Result

{
"data": {
"updateChart": {

"chart": {
"id": "Q2hhcnQ6MjM5",
"name": "Teddy Bear",
"enabled": "1"

}
}

(continues on next page)

4.1. GraphQL API 43

Pattoo Documentation

(continued from previous page)

}
}

ChartDataPoint Table Mutation

This section outlines how to mutate ChartDataPoint data.

Add a New ChartDataPoint

This mutation will add a DataPoint to an existing chart then return the resulting fields:

Mutation

mutation {
createChartDataPoint(Input: {idxDatapoint: "3", idxChart: "239"}) {
chartDatapoint {

id
idxChartDatapoint
idxDatapoint
idxChart

}
}

}

Result

{
"data": {
"createChartDataPoint": {

"chartDatapoint": {
"id": "Q2hhcnREYXRhUG9pbnQ6MjQy",
"idxChartDatapoint": "242",
"idxDatapoint": "3",
"idxChart": "239"

}
}

}
}

Modify ChartDataPoint Name

This mutation will remove a DataPoint from the ChartDataPoint entry (Disable the entry for the chart):

Mutation

44 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

mutation {
updateChartDataPoint(Input: {idxChartDatapoint: "242", enabled: "0"}) {
chartDatapoint {

id
idxChartDatapoint
idxDatapoint
idxChart
enabled

}
}

}

Result

{
"data": {

"updateChartDataPoint": {
"chartDatapoint": {
"id": "Q2hhcnREYXRhUG9pbnQ6MjQy",
"idxChartDatapoint": "242",
"idxDatapoint": "3",
"idxChart": "239",
"enabled": "0"

}
}

}
}

User Table Mutation

This section outlines how to mutate user data.

Add a New User

This mutation will add a User then return the resulting fields:

Mutation

mutation {
createUser(Input: {username: "foo@example.org", firstName: "Foo", lastName: "Fighter

→˓", password: "123456"}) {
user {

id
idxUser
firstName
lastName
username
enabled

}
}

}

4.1. GraphQL API 45

Pattoo Documentation

Result

{
"data": {
"createUser": {

"user": {
"id": "VXNlcjoz",
"idxUser": "3",
"firstName": "Foo",
"lastName": "Fighter",
"username": "foo@example.org",
"enabled": "1"

}
}

}
}

Modify User FirstName

This mutation will remove a DataPoint from the ChartDataPoint entry (Disable the entry for the chart):

Mutation

mutation {
updateUser(Input: {idxUser: "3", firstName: "Street"}) {
user {

idxUser
firstName
lastName
username
enabled

}
}

}

Result

{
"data": {
"updateUser": {

"user": {
"idxUser": "3",
"firstName": "Street",
"lastName": "Fighter",
"username": "foo@example.org",
"enabled": "1"

}
}

}
}

46 Chapter 4. Testing GraphQL Queries

Pattoo Documentation

Favorite Table Mutation

This section outlines how to mutate favorite data.

Add a New Favorite

This mutation will add a Favorite then return the resulting fields:

Mutation

mutation {
createFavorite(Input: {idxUser: "3", idxChart: "149", order: "2"}) {
favorite{

id
idxFavorite
idxChart
idxUser
enabled

}
}

}

Result

{
"data": {
"createFavorite": {

"favorite": {
"id": "RmF2b3JpdGU6Mg==",
"idxFavorite": "2",
"idxChart": "149",
"idxUser": "3",
"enabled": "1"

}
}

}
}

Modify Favorite

This mutation will remove the Favorite entry (Disable the entry):

Mutation

mutation {
updateFavorite(Input: {idxFavorite: "2", enabled: "0"}) {
favorite {

idxFavorite
idxChart

(continues on next page)

4.1. GraphQL API 47

Pattoo Documentation

(continued from previous page)

idxUser
enabled

}
}

}

Result

{
"data": {
"updateFavorite": {

"favorite": {
"idxFavorite": "2",
"idxChart": "149",
"idxUser": "3",
"enabled": "0"

}
}

}
}

4.2 Queries with REST

It’s best to become familiar with REST before trying these tests.

Here are some things to remember.

1. By default the pattoo server will run on port TCP 20202.

2. If you are running it on your local machine the RESTful API URLs will all start with http://localhost:20202/
pattoo/api/v1/web/rest. All the examples assume make reference to this fact. So if the uri /data is mentioned
then assume we are referring to the complete URL of http://localhost:20202/pattoo/api/v1/web/rest/data

Let’s begin.

4.2.1 Why a RESTful Interface?

We provide a RESTful interface for ease of comparison with GraphQL for a limited set of functions. There will be
no further development of the RESTful beyond what is listed here. Do not write any pattoo related code based on
REST. This feature is deprecated and will soon be removed.

4.2.2 Using the RESTful Interface (Deprecated)

View DataPoint data

To view data for generated by a specific DataPoint visit the /data URI. Add the idx_datapoint value to the end
to get /data/1 for idx_datapoint value of 1.

1. By default a week’s worth of data is returned.

2. There is no ability to get data for all DataPoints simultaneously.

48 Chapter 4. Testing GraphQL Queries

http://localhost:20202/pattoo/api/v1/web/rest
http://localhost:20202/pattoo/api/v1/web/rest
http://localhost:20202/pattoo/api/v1/web/rest/data

Pattoo Documentation

3. You can use the ?secondsago=X query string to get data starting X seconds ago to the most recently stored
data.

In this case we have data from /data/1?secondsago=3600

[
{

"1573619400" : 3878839847
},
{

"1573619700" : 3879239629
},
{

"1573620000" : 3879652192
},
{

"1573620300" : 3880050372
},
{

"1573620600" : 3880449410
},
{

"1573620900" : 3880856015
},
{

"1573621200" : 3881272430
},
{

"1573621500" : 3881704477
},
{

"1573621800" : 3882250116
},
{

"1573622100" : 3882650025
},
{

"1573622400" : 3883064936
}

]

4.2. Queries with REST 49

Pattoo Documentation

50 Chapter 4. Testing GraphQL Queries

CHAPTER 5

Miscellaneous Information

Technical background information on the project.

5.1 Creating pattoo Agents

Documentation on how to create your own custom agents can be found here.

5.2 Performance and Troubleshooting

Performance tuning and troubleshooting are related. So we created a page for both!

5.2.1 Troubleshooting

Troubleshooting steps can be found in the PattooShared troubleshooting documentation

5.2.2 pattoo Performance Tuning

There are a number of ways to improve pattoo performance.

Use RAM disks for Caching

We have seen a 10X improvement in the pattoo_ingester records / second performance when using a RAM
disk versus SSDs. We recommend using RAM disks and SSDs for your cache directory over regular hard drives in
production environments.

51

https://pattoo-shared.readthedocs.io/en/latest/agents.html
https://pattoo-shared.readthedocs.io/en/latest/troubleshooting.html

Pattoo Documentation

Run the pattoo_ingester More Frequently

The pattoo_ingester needs to run periodically to import agent data files into the database. You want to ensure
that it can keep up with this task. Check your logs to make sure that the completion time of each pattoo_ingester
run is less than the configured polling_interval. Increase the crontab frequency if it isn’t.

Database Performance Improvements

The pattoo_ingester makes many connections to the database. You have a number of options if it crashes.
Check your logs for the cause of errors to help you choose the best corrective action.

1. If the errors state that you have too many connections, then increase max_connections value in the server
configuration file. The default is 200. Try 300 and increase as needed.

[mysqld]
max_connections = 300

2. If the errors mention pool_size or max_overflow, then edit your configuration file and adjust those values.

db_pool_size: 10
db_max_overflow: 10

Reduce Logging

The default pattoo debug logging level can create large files. This is done to make it easier to troubleshoot the
initial installation. Set the level to info for most scenarios.

5.3 JSON Formatting for pattoo-agents

JSON data formatting can be found in the Pattoo Shared data documentation

5.4 Pattoo Terminology

A complete glossary of terms can be found in the Pattoo Shared glossary documentation

52 Chapter 5. Miscellaneous Information

https://pattoo-shared.readthedocs.io/en/latest/data.html
https://pattoo-shared.readthedocs.io/en/latest/glossary.html

CHAPTER 6

Developers

6.1 How To Contribute

Start contributing today!

6.1.1 Introduction

Below is the workflow for having your contribution accepted into the pattoo repository.

1. Create an Issue or comment on an existing issue to discuss the feature

2. If the feature is approved, assign the issue to yourself

3. Fork the project

4. Clone the fork to your local machine

5. Add the original project as a remote (git remote add upstream https://github.com/PalisadoesFoundation/pattoo,
check with: git remote -v)

6. Create a topic branch for your change (git checkout -b BranchName)

7. you may create additional branches if modifying multiple parts of the code

8. Write code and Commit your changes locally. An example of a proper git commit message can be seen
below:

9. When you need to synch with upstream (pull the latest changes from main repo into your current branch), do:

1. git fetch upstream

2. git merge upstream/master

10. Check for unnecessary white space with git diff --check.

11. Write the necessary unit tests for your changes.

53

https://github.com/PalisadoesFoundation/pattoo

Pattoo Documentation

12. Run all the tests to assure nothing else was accidentally broken

13. Push your changes to your forked repository (git push origin branch)

14. Perform a pull request on GitHub

15. Your code will be reviewed

16. If your code passes review, your pull request will be accepted

6.1.2 Code Style Guide

For ease of readability and maintainability code for all pattoo projects must follow these guidelines. Code that does
not comply will not be added to the master branch.

1. All pattoo projects use the Google Python Style Guide for general style requirements

2. All pattoo python projects use the The Chromium Projects Python Style Guidelines for docstrings.

3. Indentations must be multiples of 4 blank spaces. No tabs.

4. All strings must be enclosed in single quotes

5. In addition too being pylint compliant, the code must be PEP8 and PEP257 compliant too.

6. There should be no trailing spaces in files

Guidelines to remember

• Always opt for the most pythonic solution to a problem

• Avoid applying idioms from other programming languages

• Import each module with its full path name. ie: from pack.subpack import module

• Use exceptions where appropriate

• Use doc strings

• Try not to have returns at multiple points in a function unless they are failure state returns.

• If you are in the middle of a development session and have to interrupt your work, it is a good idea to write a
broken unit test about what you want to develop next. When coming back to work, you will have a pointer to
where you were and get back on track faster.

Commits

The pattoo projects strive to maintain a proper log of development through well structured git commits. The links
below offer insight and advice on the topic of commit messages:

1. https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message

2. http://chris.beams.io/posts/git-commit/

Sample .vimrc File for Compliance

You can use this sample .vimrc file to help meet our style requirements

54 Chapter 6. Developers

https://google.github.io/styleguide/pyguide.html#Exceptions
https://google.github.io/styleguide/pyguide.html#Exceptions
http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_google.html
https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message
http://chris.beams.io/posts/git-commit/

Pattoo Documentation

6.2 Testing Your Code

Make sure you create your own unittests for all the classes, methods, and functions you have created or modified.
Place them in the tests/ directory in a subdirectory that matches the relative location of your production code under
the pattoo/ directory.

6.2.1 Create Unittest Database

Assuming you already have the pattoo database set up, these steps will copy the contents of the pattoo database to a
new pattoo_unittest database so that it can be used by the local unittests.

:: $ mysqldump -u root -p pattoo > pattoo.sql Enter password: $ mysql -u root -p pattoo_unittest < pattoo.sql Enter
password:

6.2.2 Database Setup

The unittests assume that a MySQL / MariaDB testing database has been created with the following parameters:

• db_hostname: localhost

• db_username: travis

• db_password: K2nJ8kFdthEbuwXE

• db_name: pattoo_unittest

Create a database and grant full privileges to the travis user.

mysql
MariaDB [(none)]> CREATE DATABASE pattoo_unittest;
MariaDB [(none)]> GRANT ALL PRIVILEGES ON pattoo_unittest.* TO 'travis'@'localhost'
→˓identified by 'K2nJ8kFdthEbuwXE';
MariaDB [(none)]> FLUSH PRIVILEGES;
MariaDB [(none)]> exit;
#

6.2.3 Setting up Syslog Error Codes

pattoo uses unique error code numbers for syslog messages to make troubleshooting easier. Run the
tests/bin/error_code_report.py script before the unittests to make there are no duplicates. The unittests will fail if
there are duplicates.

$ tests/bin/error_code_report.py

Pattoo Logging Error Code Summary Report
--
Starting Code : 20001
Ending Code : 20141
Duplicate Codes to Resolve : []
Available Codes : [20141, 20142, 20143, 20144, 20145]
$

Everything is OK if there are no Duplicate Codes to Resolve.

6.2. Testing Your Code 55

Pattoo Documentation

6.2.4 Running Tests

The tests/bin/do_all_tests.py script will recursively run all unittests in the tests/ directory.

56 Chapter 6. Developers

	Introduction
	About Pattoo
	Basic Installation
	Configuration Guide
	Configuring systemd Daemons
	Backup and Restoration

	Daemon and Cron Setup
	Periodic Jobs
	Pattoo Web API Daemon
	Pattoo Agent API Daemon
	Pattoo Ingester Daemon

	Using the CLI
	Using the CLI

	Testing GraphQL Queries
	GraphQL API
	Queries with REST

	Miscellaneous Information
	Creating pattoo Agents
	Performance and Troubleshooting
	JSON Formatting for pattoo-agents
	Pattoo Terminology

	Developers
	How To Contribute
	Testing Your Code

